A Semi-lagrangian Discontinuous Galerkin Superconvergence

نویسندگان

  • C. STEINER
  • M. MEHRENBERGER
  • D. BOUCHE
چکیده

We show a superconvergence property for the Semi-Lagrangian Discontinuous Galerkin scheme of arbitrary degree in the case of constant linear advection equation with periodic boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the geometric properties of the semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equation

The semi-Lagrangian discontinuous Galerkin method, coupled with a splitting approach in time, has recently been introduced for the Vlasov–Poisson equation. Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes. In this paper we study the conservation of important invari...

متن کامل

A comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions

The purpose of the present paper is to compare two semi-Lagrangian methods in the context of the four-dimensional Vlasov–Poisson equation. More specifically, our goal is to compare the performance of the more recently developed semi-Lagrangian discontinuous Galerkin scheme with the de facto standard in Eulerian Vlasov simulation (i.e. using cubic spline interpolation). To that end, we perform s...

متن کامل

Superconvergence Properties of Discontinuous Galerkin Methods for Two-point Boundary Value Problems

Three discontinuous Galerkin methods (SIPG, NIPG, DG) are considered for solving a one-dimensional elliptic problem. Superconvergence for the error at the interior node points and the derivative of the error at Gauss points are considered. All theorectical results obtained in the paper are supported by the results of numerical experiments.

متن کامل

Discontinuous Galerkin Semi-lagrangian Method for Vlasov-poisson

Abstract. We present a discontinuous Galerkin scheme for the numerical approximation of the onedimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applie...

متن کامل

Superconvergence of Discontinuous Galerkin Method for Scalar Nonlinear Conservation Laws in One Space Dimension

Abstract. In this paper, the analysis of the superconvergence property of the discontinuous Galerkin (DG) method applied to one-dimensional time-dependent nonlinear scalar conservation laws is carried out. We prove that the error between the DG solution and a particular projection of the exact solution achieves (k+ 3 2 )-th order superconvergence when upwind fluxes are used. The results hold tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013